Optimization for Data Analysis (Hardcover)

Optimization for Data Analysis Cover Image

Optimization for Data Analysis (Hardcover)

$49.99


Not On Our Shelves—Ships in 1-5 Days
Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks.
Product Details ISBN: 9781316518984
ISBN-10: 1316518981
Publisher: Cambridge University Press
Publication Date: April 5th, 2022
Pages: 300
Language: English